skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lamy, Frank"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 18, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Abstract. Paleoceanographic interpretations of Plio-Pleistocene climate variability over the past 5 million years rely on the evaluation of event timing of proxy changes in sparse records across multiple ocean basins. In turn, orbital-scale chronostratigraphic controls for these records are often built from stratigraphic alignment of benthic foraminiferal stable oxygen isotope (δ18O) records to a preferred dated target stack or composite. This chronostratigraphic age model approach yields age model uncertainties associated with alignment method, target selection, the assumption that the undated record and target experienced synchronous changes in benthic foraminiferal δ18O values, and the assumption that any possible stratigraphic discontinuities within the undated record have been appropriately identified. However, these age model uncertainties and their impact on paleoceanographic interpretations are seldom reported or discussed. Here, we investigate and discuss these uncertainties for conventional manual and automated tuning techniques based on benthic foraminiferal δ18O records and evaluate their impact on sedimentary age models over the past 3.5 Myr using three sedimentary benthic foraminiferal δ18O records as case studies. In one case study, we present a new benthic foraminiferal δ18O record for International Ocean Discovery Program (IODP) Site U1541 (54°13′ S, 125°25′ W), recently recovered from the South Pacific on IODP Expedition 383. The other two case studies examine published benthic foraminiferal δ18O records of Ocean Drilling Program (ODP) Site 1090 and the ODP Site 980/981 composite. Our analysis suggests average age uncertainties of 3 to 5 kyr associated with manually derived versus automated alignment, 1 to 3 kyr associated with automated probabilistic alignment itself, and 2 to 6 kyr associated with the choice of tuning target. Age uncertainties are higher near stratigraphic segment ends and where local benthic foraminiferal δ18O stratigraphy differs from the tuning target. We conclude with recommendations for community best practices for the development and characterization of age uncertainty of sediment core chronostratigraphies based on benthic foraminiferal δ18O records. 
    more » « less
  4. Abstract Accurate reconstructions of export production in the Subantarctic Zone of the Southern Ocean are crucial for understanding the carbon cycle during Earth's past. However, due to the strong bottom water circulation of the Antarctic Circumpolar Current, sediment redistribution complicates age‐model‐derived bulk mass accumulation rates (BMAR). Here, we assess export production and its drivers over the past ∼1.4 Myr near the Drake Passage entrance using BMAR of biogenic barium, organic carbon, biogenic opal, calcium carbonate, and iron from sediment core PS97/093‐2, all of which are corrected for lateral sediment redistribution (corr‐BMAR). To quantify this correction, we explore the relationship between sortable silt as a bottom current strength proxy and230Th‐derived focusing factors as indicators of lateral redistribution of sediments, respectively. Our findings highlight peak Fe input prior and during glacials of the Mid‐Pleistocene Transition (MPT), likely driven by enhanced Patagonian weathering. The carbonate record indicates increased deep‐ocean corrosivity after around 1 Ma ago and displays a shift in the accumulation pattern post‐MPT, with only isolated peaks in some peak interglacials. The high carbonate values during MIS 11 likely relate toGephyrocapsacoccolithophore propagation, preceded and followed by prolonged carbonate dissolution periods, possibly linked to the Mid‐Brunhes Event. After the MPT, productivity proxies respond to glacial and interglacial intensity, with maxima found during MIS 16, MIS 11, MIS 5, and the Holocene, while minima occur during MIS 15–12. Our findings offer insights into long‐term productivity dynamics and their relationship to important climatic events over the past 1.4 Myr. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. The Antarctic Circumpolar Current (ACC) represents the world’s largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1–3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial–interglacial cycles5–8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11–13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming. 
    more » « less
  6. null (Ed.)
  7. Abstract. We present a global atlas of downcore foraminiferal oxygen and carbon isotope ratios available at https://doi.org/10.1594/PANGAEA.936747(Mulitza et al., 2021a). The database contains 2106 published and previously unpublished stable isotope downcore records with 361 949 stable isotopevalues of various planktic and benthic species of Foraminifera from 1265 sediment cores. Age constraints are provided by 6153 uncalibratedradiocarbon ages from 598 (47 %) of the cores. Each stable isotope and radiocarbon series is provided in a separate netCDF file containingfundamental metadata as attributes. The data set can be managed and explored with the free software tool PaleoDataView. The atlas will provideimportant data for paleoceanographic analyses and compilations, site surveys, or for teaching marine stratigraphy. The database can be updated withnew records as they are generated, providing a live ongoing resource into the future. 
    more » « less
  8. The atlas contains a collection of 2,106 published and previously unpublished downcore stable isotope records of various planktonic and benthic species of foraminifera from 1,265 globally distributed sediment cores. Uncalibrated radiocarbon dates are provided for 598 cores in the collection. Each stable isotope and radiocarbon series is stored in a separate netCDF file containing fundamental meta data as attributes. The data set can be further explored and analyzed with the free software tool PaleoDataView (Langner, M. and Mulitza, S.: Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019). WA_Foraminiferal_Isotopes_2022.zip contains 2006 stable isotope records (in netCDF format) and 598 radiocarbon records (in netCDF format). The folder structure in the file should be preserved and is required to use the collection with the software PaleoDataView. 
    more » « less